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We review research investigating mitochondrial damage during heart and

brain ischaemia, focusing on the mechanisms and consequences of ischae-

mia-induced and/or reperfusion-induced: (a) inhibition of mitochondrial

respiratory complex I; (b) release of cytochrome c from mitochondria; (c)

changes to mitochondrial phospholipids; and (d) nitric oxide inhibition of

mitochondria. Heart ischaemia causes inhibition of cytochrome oxidase

and complex I, release of cytochrome c, and induction of permeability

transition and hydrolysis and oxidation of mitochondrial phospholipids,

but some of the mechanisms are unclear. Brain ischaemia causes inhibition

of complexes I and IV, but other effects are less clear.

Introduction

Ischaemic heart disease and ischaemic brain disease

are the first and second most common causes of death

in the world [1]. Ischaemic injury is fast, multidimen-

sional, and lethal, and at the centre of this pathologi-

cal storm are mitochondria. Mitochondrial

dysfunction is considered to be one of the main mech-

anisms involved in ischaemic injury in heart, brain,

liver, kidney, and other organs and tissues. However,

the causal relationships between various events occur-

ring during ischaemic insult are not completely under-

stood. Mitochondria themselves are affected by

changes in the levels of oxygen, oxidants and Ca2+

during ischaemia or reperfusion. On the other hand,

alterations in mitochondrial functions contribute to is-

chaemic or reperfusion pathology via loss of ATP

production and Ca2+ transport and increased reactive

oxygen species (ROS) production. Mitochondria may

also directly initiate cell death by permeability

transition or release of factors inducing apoptosis:

cytochrome c, apoptosis-inducing factor (AIF), and

endonuclease G.

In recent years, many reviews have been published

on mitochondrial involvement in ischaemia-induced

myocardial or cerebral dysfunction. In the present

review, we focus on four key aspects of mitochondrial

alterations during heart and brain ischaemia that have

been relatively less discussed in recent reviews but

remain controversial. These are: (a) inhibition of respi-

ratory complex I and its pathological or protective

roles; (b) inhibition of cytochrome c oxidase (COX) by
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nitric oxide (NO) in competition with oxygen; (c)

changes in mitochondrial lipids; and (d) mechanisms

of cytochrome c release from mitochondria during

ischaemia and/or reperfusion. Understanding these

mechanisms may have important implications for

designing mitochondria-targeted therapies against

ischaemic injury during myocardial infarction and

stroke.

Overview of ischaemia

The basic events of ischaemic pathology are well

known. Ischaemia means insufficient blood flow to tis-

sue, resulting in insufficient oxygen and glucose to

maintain ATP levels. Within seconds of ATP levels

falling below threshold, the heart stops contracting

and the brain loses consciousness. This loss of tissue

function may protect heart and brain viability by pre-

serving limited ATP for cell functions required for cell

survival. However, loss of heart contractility obviously

causes global ischaemia and irreversible damage to the

brain and body unless the blood supply is restored

quickly. Insufficient cellular ATP means that the

sodium and calcium pumps cannot extrude these ions

from the cell, so that, if the ions continue to enter,

then the cell swells, and loses its membrane potential

and sodium-linked transport, and the cytosolic Ca2+

level starts to rise (potentially exacerbated by the loss

of mitochondrial Ca2+ uptake). Continued swelling

can kill the cell by rupturing the plasma membrane.

Elevated Ca2+ can potentially kill the cell via activa-

tion of proteases, phospholipases, apoptosis, myocyte

hypercontracture, or mitochondrial permeability tran-

sition (MPT). In the brain, these events are exacer-

bated by the ischaemic release from cells of the

neurotransmitter glutamate and the activation of glu-

tamate receptors, which increase neuronal Na+ and

Ca2+ levels. Reperfusion of ischaemic tissue can pre-

vent cell death by returning oxygen and glucose, but it

can also trigger irreversible damage by enabling Ca2+

uptake into mitochondria and a burst of ROS produc-

tion from the oxygen. Mitochondria isolated after

ischaemia are found to be damaged, and this damage

can occur during the ischaemic phase and/or the reper-

fusion phase.

Hypoxia, NO, and ROS

Factors thought to mediate mitochondrial damage

during ischaemia–reperfusion include: hypoxia, NO,

ROS, Ca2+, and fatty acids. NO is produced by three

NO synthase (NOS) isoforms: neuronal NOS (nNOS)

and endothelial NOS (eNOS) are regulated by Ca2+

and phosphorylation, and are constitutively expressed

in heart, endothelium, and some neurons, whereas

inducible NOS (iNOS) is only expressed in inflamma-

tory conditions, but, once expressed, produces high,

sustained levels of NO [2–4]. ROS are compounds

derived from oxygen that react uncatalysed with other

molecules, and include superoxide, hydrogen peroxide,

and the hydroxyl radical. Reactive nitrogen species

(RNS) are compounds derived from NO that react

uncatalysed with other molecules, and include perox-

ynitrite, NO2, and S-nitrosothiols. The main sources of

ROS are the NADPH oxidases, uncoupled NOSs,

endoplasmic reticulum, peroxisomes, and mitochondria

[5]. Superoxide (from, for example, mitochondria or

NADPH oxidase) can react at the diffusion-limited

rate with NO to produce peroxynitrite (ONOO�),
which is a strong oxidant of, for example, protein

thiols. S-nitrosothiols, such as S-nitrosoglutathione,

can transfer an NO+ group to other thiols, such as

protein cysteine residues, and may thereby change pro-

tein function, or the reverse reaction may occur to

remove the NO+ group. However, many S-nitrosothiols

auto-oxidize, leaving an oxidized thiol.

A central, initiating event of ischaemic damage is

inhibition of mitochondrial COX (complex IV) owing

to insufficient levels of its substrate, oxygen. The

apparent Km of COX for oxygen is ~ 0.5 lM in normal

conditions, which means that oxygen levels need to fall

by one or two orders of magnitude before mitochon-

drial respiration is limited by oxygen [6]. However,

NO inhibits COX in competition with oxygen, so NO

can dramatically increase the apparent Km of respira-

tion for oxygen [7,8]. For example, 60 nM NO

increases the apparent Km of respiration for oxygen to

30 lM (the median level of oxygen found in the normal

brain). Thus, NO could potentially cause dramatic sen-

sitization to hypoxia. However, it should be noted that

the NOSs (nNOS, eNOS, and iNOS) generally have

apparent Km values for oxygen in the range 15–30 lM
[9], so that, during hypoxia, they will be strongly

inhibited. On the other hand, if the NOSs are highly

expressed or highly activated, or are located in a

higher-oxygen microenvironment, then enough NO

may still be produced to affect the oxygen affinity of

COX. Also, during hypoxia, NO may be produced

from nitrite by haemoglobin (and possibly myoglobin)

without oxygen [10]. We found that inflammation-

induced iNOS expression in the isolated rat aorta [11]

and glial–neuronal cocultures [12] strongly sensitized

to hypoxia-induced cell death, apparently via NO inhi-

bition of COX. iNOS is expressed in glial cells in

many neurological and neurodegenerative conditions

[13,14]. iNOS is expressed in the heart during heart
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failure [15,16]. In such inflammatory conditions, NO

from iNOS might sensitize to hypoxic damage.

However, again, it should be noted that low levels of

NO, via stimulation of soluble guanylate cyclase, can

protect cells by vasodilatation, by block of apoptosis,

and by inhibition of MPT. For example, we have

shown that NO can protect the ischaemic heart by

inhibition of permeability transition [17]. Additionally,

it has been suggested that NO inhibition of respiration

during hypoxia may protect the heart by promoting

myocardial ‘hibernation’ [18].

In neuronal cultures, we found that NO from nNOS

sensitized to hypoxic neuronal death, apparently via

NO inhibition of COX [19]. nNOS is structurally and

functionally coupled to the glutamate N-methyl-D-

aspartate receptor, which is activated during ischae-

mia, resulting in NO production that may potentially

inhibit neuronal respiration [20,21]. Glutamate can

induce the death of some neurons via stimulation of

nNOS [22,23]. Genetic knockout of nNOS or iNOS

protects against ischaemic brain damage, whereas

knockout of eNOS is detrimental, presumably because

the latter mediates vasodilatation [24].

Whereas NO can inhibit COX acutely, potently, and

reversibly, the NO derivatives peroxynitrite and S-nitr-

osothiols can inactivate complex I and other mito-

chondrial components by oxidation or S-nitrosation

[25]. Complex I is one of the main sources of mito-

chondrial ROS, and inhibition of complex I by perox-

ynitrite and S-nitrosothiols stimulates this ROS

production [25–28].
RNS, ROS and Ca2+ can also activate the MPT

pore (MPTP), which is a pore in the inner mitochon-

drial membrane that is freely permeable to all small

molecules, thereby causing swelling of the mitochon-

dria and depletion of cell ATP [29–31]. MPT can

occur during heart and brain ischaemia and/or reper-

fusion, and inhibitors of MPT (in particular cyclospo-

rin A) can block ischaemic–reperfusion damage in

both organs [31,32]. Induction of MPT can damage

mitochondria through the resultant release of cyto-

chrome c (if swelling is sufficient to rupture the outer

membrane), NADH and other components from the

matrix space.

Which components of oxidative
phosphorylation are affected by
ischaemia?

Data concerning the effects of ischaemia–reperfusion
on the mitochondrial oxidative phosphorylation system

have been accumulating for approximately five decades

[33,34].

To produce ATP, mitochondria need respiratory

substrates and oxygen, the supply of which stops dur-

ing ischaemia, thus blocking ATP synthesis. In these

conditions, the mitochondrial ATP synthase reverses

direction and starts working as an ATPase, hydroly-

sing glycolytic ATP [35], and thus accelerates the

depletion of cellular ATP. The mitochondrial ATPase

activity is regulated by an ATPase inhibitor protein,

initiation factor 1 [36,37]. Initiation factor 1 contents

and properties are different in different animal species

and different tissue mitochondria, and therefore deter-

mine the rate of ATP exhaustion. For example, ATP

in the dog myocardium falls to 5% of the control level

after a 1-h ligation of the coronary artery [38,39], but

ATP depletion may be slower during total ischaemia

in vitro [40]. Importantly, the total content of adenine

nucleotides also decreases [39,40]. Even after 15 min of

occlusion of the coronary artery followed by reperfu-

sion, the levels of heart ATP and total adenine nucleo-

tides are not restored after 1 h [41] or even after

4 days of postischaemic reperfusion of the heart [42].

It was thought [33] that depletion of high-energy phos-

phates is (directly or indirectly) related to the develop-

ment of irreversible injury, which proceeds to necrosis

despite restitution of coronary flow. In the dog heart,

necrosis occurs after 20–60 min of severe ischaemia,

when ATP decreases to < 10% of the normal level

[33]. In the brain, ischaemia for 5–15 min can lead to

the death of sensitive neuronal populations, mediated

by excitotoxicity [43]. Potential causes of irreversibility

are: damage to the sarcolemma, decreases in high-

energy phosphates, loss of cellular ionic gradients,

Ca2+ overload, and activation of phospholipases and

various proteases [33].

Measurements of mitochondrial respiration in

state 3 with NAD+-dependent substrates and succi-

nate (complex II substrate), and of COX activity,

showed large and variable changes when mitochondria

were isolated from ischaemic heart (published in 31

papers; for review, see [35]). For example, 1 h of liga-

tion of the dog coronary artery was reported to inhibit

state 3 respiration by between 16% and 98% (eight

papers; see [35]). Surprisingly, decreases in state 3 res-

piration rate of 40% and 50% were observed after just

5 or 10 min of ischaemia [44,45]. In most, but not all,

cases, the decrease in state 3 respiration was stronger

with NAD+-dependent substrates than with succinate,

whereas COX activity was generally unchanged, with

rare exceptions (see [46]).

In the heart, fatty acids are the main respiratory

substrates. During heart ischaemia, decreases in carni-

tine palmitoyltransferase activity and in palmitate but

not hexanoate oxidation were found [44,47]. Attempts
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to restore palmitate oxidation by addition of

cytochrome c or malate were ineffective, suggesting

damage to the upper part of the respiratory chain or

b-oxidation system. We found that the respiratory

inhibition caused by ischaemia was similar on ADP-

stimulated and uncoupler-stimulated mitochondrial

respiration, using several different respiratory sub-

strates [35], in agreement with other studies [48], with

the exception of one [49]. These findings suggest that

the decrease in mitochondrial state 3 respiration dur-

ing ischaemia (at least in some models of ischaemia/

conditions) is probably attributable to failure of respi-

ratory substrate oxidation but not to failure of adenine

nucleotide transport or ATP synthesis.

This conclusion was supported by studies demon-

strating that, during relatively short periods of ischae-

mia (20–30 min), complex I activity gradually

decreases in parallel with the decrease in mitochondrial

respiration with NAD+-dependent respiration [48,50].

The activity of complex III was found also to

decrease, but more gradually, and that of complex V

decreased most rapidly (by 40% after 5 min of global

ischaemia), whereas the activities of complexes II and

IV were unchanged [50,51]. Total ligation of the dog

heart left anterior descending coronary artery for

30 min and 60 min decreased the state 3 respiration

rate (~ 80%) and complex I activity (~ 70%), and

these did not recover on reperfusion [51]. A similar

decrease in complex I activity was observed in rats

after 20–25 min of global no-flow ischaemia [52]. In

contrast, other investigators did not observe inhibition

of complex I or other complexes during 40 min of

hypoxic perfusion [53] or 30 min of coronary artery

occlusion in rats [48], although inhibition of state 3

and uncoupled respiration was found. Lesnefsky et al.

[54] also reported that 45 min of global no-flow ischae-

mia in isolated, perfused rabbit hearts caused state 3

respiration with glutamate to decrease without an

effect on the activities of NADH–cytochrome c oxido-

reductase (complexes I and III), succinate–cyto-
chrome c reductase (complexes II and III), and COX.

As this study found reduced levels of cytochrome c in

ischaemic mitochondria, it is possible that the ischae-

mia-induced decrease in respiration could be a result

loss of cytochrome c from mitochondria.

In the brain, global ischaemia for more than a few

minutes causes similar inhibition of mitochondrial

state 3 and uncoupled respiration with both NAD+-

dependent and FAD-dependent substrates [55], sug-

gesting that the mitochondrial respiratory chain is

inhibited rather than the phosphorylating subsystem.

This initial decline in respiration almost fully recovers

during 10–30 min of recirculation [56,57]. However,

delayed suppression of mitochondrial respiratory

capacity is observed after prolonged reperfusion in cer-

tain regions of the brain containing neurons that are

selectively vulnerable to ischaemic–reperfusion insult

[58,59]. This inhibition is thought to be related to inac-

tivation or degradation of the pyruvate dehydrogenase

complex [60–62]. Similar changes in mitochondrial

respiratory capacity (inhibition by 45–60% of state 3

and uncoupled respiration with pyruvate or succinate),

but over longer (~ 2 h) periods of ischaemia, are

observed during regional, focal ischaemia induced by

middle cerebral artery occlusion in rats [63,64]; these

are also reversible during the first hours of reperfusion,

but then secondary deterioration is seen after 2–4 h of

reperfusion [55].

Ischaemic injury to the brain is thought to be at

least partly mediated by overactivation of glutamate

N-methyl-D-aspartate receptors, causing a form of neu-

ronal death called excitotoxicity. The mechanisms of

excitotoxicity are still unclear, but involve Ca2+ over-

load of the neurons, ROS production, and mitochon-

drial dysfunction [65]. Excitotoxic neuronal damage

results in translocation of AIF from mitochondria to

the nucleus, where it induces neuronal death via

activation of DNases. AIF translocation during

excitotoxicity and brain ischaemia is mediated by

Ca2+-activated calpain cleavage of mitochondrial AIF

[66,67].

In conclusion, it is generally accepted that ischaemia

in the heart, brain or other organs leads to progressive

injury to the mitochondrial oxidative phosphorylation

system, particularly the respiratory chain. In the heart,

short periods of ischaemia rapidly induce inhibition of

complex I and ATP synthase [50,68]. These are consid-

ered to be reversible events, as mitochondrial functions

usually recover with restoration of blood flow [69]. If

ischaemia continues, irreversible inhibition of com-

plex IV occurs, along with the release of cytochrome c

from mitochondria [50,69]. Similarly, during early

brain ischaemia, the activities of complexes I, II and

III of the mitochondrial respiratory chain are sup-

pressed, but can be restored by reperfusion [58,70,71],

whereas the activity of COX becomes inhibited only

after long periods of reperfusion, suggesting that this

inhibition may be caused by oxidative damage.

Changes in the phospholipid
composition of mitochondrial
membranes during ischaemia

Decreased ATP levels during tissue ischaemia–reperfu-
sion disturb cellular ionic gradients and increase the

Ca2+ concentration, which may cause activation of
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numerous phospholipases, leading to degradation of

membrane phospholipids [72,73]. Changes in the mem-

brane phospholipid composition concomitant with free

fatty acid accumulation may contribute to alteration

of mitochondrial inner membrane integrity, and may

lead to uncoupling, inhibition of mitochondrial respi-

ratory enzymes and oxidative phosphorylation during

ischaemia–reperfusion. For instance, Spencer et al. [74]
showed that removal of just 1% of mitochondrial

phospholipids with phospholipase A decreased ATP

and ADP translocation in isolated rat liver mitochon-

dria by 25–50%.

In an experimental model of heart ischaemia in

dogs, the total mitochondrial phospholipid content

was found to decrease after 15 min of coronary artery

ligation followed by 5 min of reperfusion [75], and the

cardiolipin content decreased after 10–20 min of coro-

nary artery ligation [76] or 3 h of ischaemia [77]. We

found significant decreases in the contents of phospha-

tidylethanolamine, phosphatidylcholine, cardiolipin

and total phospholipids in rabbit hearts after 0.5 h

and 1 h of total ischaemia, and after 1 h and 4 h of

permanent coronary artery occlusion [35]. In mito-

chondria isolated from heart after 0.5–2 h of total

ischaemia in vitro, the cardiolipin and total phospho-

lipid contents were decreased [35]. Lesnefsky et al. [78]

reported that heart ischaemia caused a specific

decrease in mitochondrial cardiolipin content, whereas

phosphatidylethanolamine, phosphatidylcholine and

phosphatidylinositol levels were unchanged. This may

have important implications, as many mitochondrial

proteins bind to cardiolipin and may depend on it for

activity, including various substrate carriers, NADH–
ubiquinone reductase, cytochrome bc1 complex, COX,

ATP synthase, ADP/ATP carrier, phosphate trans-

porter, and creatine phosphokinase [79,80].

As expected from the ischaemia-induced breakdown

of phospholipids, accumulation of unesterified fatty

acids in the ischaemic tissues and mitochondria was

also observed. It was more pronounced during total

ischaemia in vitro (1.8–4.8-fold increase after 0.5–2 h)

than with permanent ligation of the coronary artery

(1.5-fold and 1.6-fold after 1 h and 4 h) [35]. In our

experiments, the greatest accumulation seen was of

linoleic and arachidonic acids (an approximately eight-

fold increase after 2 h of total ischaemia) [35]. Similar

increases have been found in open-chest dogs with the

coronary artery occluded for 2 h [81]. Further degra-

dation of membrane phosholipids and concomitant

accumulation of fatty acids, including arachidonic

acid, was observed during reperfusion of previously is-

chaemic hearts [82]. Large (6.4-fold), rapid (within

1 min of ischaemia) and specific accumulation of

arachidonic acid was also detected in the mouse brain

during ischaemia induced by decapitation [83]. It is

important to note that Cocco et al. [84] found that

addition of arachidonic acid to bovine heart mitochon-

dria caused: (a) uncoupling of state 4 respiration; (b) a

decrease in respiration of mitochondrial particles

resulting from selective inhibition of complexes I and

III; and (c) a dramatic increase in H2O2 production by

mitochondria respiring on either pyruvate plus malate

or succinate. A 50% increase in state 4 respiration and

a 50% inhibition of uncoupled respiration was found

with just 1–3 lM arachidonate; the uncoupling effect

of palmitate was similar but less potent [84]. Albumin

reversed the arachidonate-induced inhibition of mito-

chondrial respiration.

We have found that mitochondria isolated from rat

heart after 30 min of ischaemia are partly uncoupled,

and this uncoupling is reversed by the addition of

albumin [85,86], indicating that the uncoupling is med-

iated by the accumulation of free fatty acids in mito-

chondria during ischaemia. This early uncoupling may

contribute to ATP depletion during ischaemia (by pro-

moting reversal of ATP synthase) and cause oxygen

and ATP insufficiency during reperfusion.

Arachidonate also causes swelling and cytochrome c

release from Ca2+-loaded rat heart mitochondria [87].

However, the mitochondrial swelling and Ca2+ release

induced by arachidonate and other unsaturated fatty

acids in Ca2+-loaded heart mitochondria appears not

to be mediated by permeability transition (cyclospo-

rin A-insensitive), but rather by the ATP/ADP translo-

cator [88], in contrast to liver mitochondria, where

arachidonate induces classic MPT. This mechanism of

cytochrome c release might occur during heart ischae-

mia–reperfusion, as both Ca2+ and arachidonate are

elevated in mitochondria in this situation.

Degradation of mitochondrial phospholipids also

occurs during brain ischaemia. For instance, several

studies using common carotid artery occlusion models

have shown that, during the first 30 min of ischaemia,

activation of phospholipase A2 causes decreases in the

mitochondrial contents of phosphatidylcholine, phos-

phatidylethanolamine, and cardiolipin [89–91]. These

changes were reversible during reperfusion, but recov-

ery did not occur after an extended 60-min period of

ischaemia. Changes in phospholipid content were

accompanied by a decrease in mitochondrial state 3

respiration, and inhibition of COX and ATP synthase,

which are known to depend on cardiolipin content and

fatty acid composition [89,91].

Thus, breakdown of mitochondrial membrane phos-

pholipids and accumulation of free fatty acids may

increase the permeability of the mitochondrial inner
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membrane to ions, and decrease mitochondrial mem-

brane potential and ATP production (Fig. 1). How-

ever, mild uncoupling may be beneficial for cells,

because it may decrease ROS production, as has been

suggested by Skulachev [92].

Complex I suppression during
ischaemia and its role in pathology

Complex I (NADH–ubiquinone oxidoreductase) is a

large enzyme that couples electron transfer to the

pumping of protons across the mitochondrial inner

membrane (reviewed in [93,94]). Complex I is also a

major site of mitochondrial ROS production, and is

thought to be involved in MPT [95–98]. Complex I

consists of at least 45 subunits and redox centres: fla-

vin mononucleotide and eight iron–sulfur centres. The

amount of complex I in the mitochondrial inner mem-

brane is less than that of other complexes of the respi-

ratory chain [99,100], so the respiration rate might be

more sensitive to inhibition of complex I than to inhi-

bition of other, more abundant respiratory chain com-

plexes (although other parameters also determine rate

limitation).

Inhibition of complex I activity is one of the earliest

ischaemia-induced alterations in mitochondrial func-

tion, but the causes of this inhibition are not well

understood. Possible factors that may mediate com-

plex I inactivation during ischaemia or reperfusion are

summarized in Fig. 2.

In early work, ischaemia-induced inhibition of com-

plex I was suggested to be caused by elevated concen-

trations of Ca2+, on the basis of several findings.

Heart perfusion with Ruthenium Red (an inhibitor of

Ca2+ uptake into mitochondria) prevented ischaemia–
reperfusion-induced inhibition of complex I activity

[53], implicating Ca2+ in the inhibition of complex I.

Also, when isolated heart mitochondria were exposed

to high Ca2+ levels, they became uncoupled and

inhibited at complex I, a change similar to that observed

in postischaemic mitochondria [101]. Ca2+-induced
Activation of phospholipases

Accumulation of Inhibition of 
free fatty acids oxidative phosphorylation

P bili ti f i b /Permeabilization of inner membrane/
Uncoupling

ATP depletionROS suppression

Degradation of mitochondrial phospholipids

Fig. 1. Ischaemia-induced degradation of mitochondrial

phospholipids and its consequences. Ischaemia causes activation

of various phospholipases that act on mitochondrial membrane

phospholipids. As a result, the phospholipid content decreases and

free fatty acids accumulate in mitochondria. Degradation of

mitochondrial phospholipids may cause inhibition of certain

enzymes of the oxidative phosphorylation system, leading to

further ATP depletion on reperfusion and cell death resulting from

lack of energy. Increased concentrations of free fatty acids may

cause the mitochondrial inner membrane to become pearmeable to

ions (uncoupling) or, in the case of arachidonic acid, may induce

mitochondrial swelling and loss of cytochrome c, leading to ATP

depletion and cell death. Alternatively, mild uncoupling induced by

free fatty acids may suppress ROS production at reperfusion,

promoting cell survival.

CardiolipinROSCa2+RNS

Complex I inhibition

ATP depletion ROSp

Signalling

Fig. 2. Causes and consequences of ischaemia–reperfusion-

induced inhibition of complex I of the mitochondrial respiratory

chain. Ischaemia or reperfusion induces inhibition of complex I,

which may caused by elevated concentrations of RNS, Ca2+, or

ROS, or changes in the phospholipid composition of the

mitochondrial inner membrane, particularly regarding cardiolipin.

The effect of elevated concentrations of Ca2+ may be indirect,

being mediated by ROS, which may cause oxidative damage to

cardiolipin. Complex I inhibition may lead to ATP depletion-

mediated cell death, owing to the suppression of oxidative

phosphorylation. Complex I inhibition may also cause generation of

ROS by the respiratory chain, which may lead to cell death or, if

ROS levels are not too high, may trigger intracellular signalling,

activating cell survival pathways.
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complex I inhibition might result from: (a) a direct

effect of Ca2+ on complex I; (b) Ca2+-induced perme-

ability transition affecting complex I or loss of matrix

NAD+/NADH; or (c) Ca2+-induced ROS inhibiting

complex I. Ca2+-induced inhibition of complex I in iso-

lated mitochondria was shown to be prevented in the

presence of antioxidants and superoxide dismutase, but

not catalase, and could be reversed by dithiothreitol,

suggesting that it was mediated by superoxide oxidizing

cysteine residues in the proteins [102]. Interestingly, it

was reported that Ca2+ suppressed superoxide produc-

tion by complex III in heart submitochondrial particles,

and this effect correlated with complex I inactivation

[103]. Subsequently, it was suggested that Ca2+-induced

inactivation of complex I may represent a means of lim-

iting superoxide production by a compromised electron

transport chain [103].

Ischaemia–reperfusion-induced loss of function may

also be related to direct oxidation of critical residues

within complex I. Indeed, three tryptophans located

on the 51-kDa and 39-kDa subunits of complex I were

found to be oxidized in human and bovine hearts

[104], suggesting that they are particularly vulnerable

to oxidative damage. The activity of complex I is also

decreased upon exposure of mitochondria to ROS

[105], S-nitrosothiols, or peroxynitrite [25–27]. As men-

tioned above, peroxynitrite may nitrate tyrosines

whereas S-nitrosothiols may cause S-nitrosation of

cysteines in peptides of complex I, leading to its inacti-

vation, which may be reversed by light or in the pres-

ence of glutathione or other thiols [25,27]. Increases in

the nitrotyrosine levels of mitochondrial proteins were

detected after 8 min of mouse heart ischaemia and

prior to complex I inactivation, although the nitrated

proteins were not identified [106]. S-nitrosation of the

75-kDa subunit of complex I during ischaemic precon-

ditioning of the heart has been also reported [107].

However, a causal relationship between S-nitrosation/

nitration of particular subunits and the loss of respira-

tory function of complex I during ischaemia–reperfu-
sion has not yet been determined. Also, there is no

direct evidence that ROS/RNS-induced effects are

related to oxidation/nitrosation of critical residues or

to oxidation of cardiolipin bound to complex I. In line

with the latter, it has been shown that the decrease in

complex I activity during ischaemia–reperfusion corre-

lates with the cardiolipin content in heart mitochon-

dria [108]. On the other hand, the functional

importance of cardiolipin bound to complex I has not

yet been conclusively demonstrated.

Another important question is whether the ischae-

mia-induced inactivation of complex I is pathological

or protective. At first glance, inhibition of complex I

activity leading to suppression of mitochondrial respi-

ration during ischaemia–reperfusion may appear to

be pathological. However, there is accumulating evi-

dence that inhibition of complex I prior to ischaemia

or at the beginning of reperfusion may be cardiopro-

tective [109–111]. Various chemical compounds and

medicines, such as amobarbital, ranolazine [112],

volatile anaesthetics, and diazoxide [110], as well as

S-nitrosating NO donors, such as S-nitrosoglutathi-

one, S-nitroso-2-mercaptopropionyl-glycine [113], and

mitochondria-targeted S-nitrosothiol [114], have been

found to protect hearts against ischaemia–reperfusion
injury by a mechanism thought to involve inhibition

of complex I. It has been reported that mitochondrial

proteins, particularly the 75-kDa subunit of com-

plex I, are endogenously S-nitrosated in ischaemic

preconditioning of the heart [107], which also sug-

gests that reversible S-nitrosation and inhibition of

complex I may be an innate cardioprotective mecha-

nism. How inhibition of the mitochondrial respiratory

chain may exert protection during ischaemia or reper-

fusion is unclear at present. A possible explanation is

that complex I inhibition during ischaemia limits the

Ca2+ overload and ROS production during reperfu-

sion [113]. A similar mechanism may underlie the car-

dioprotective benefits of slow reperfusion or

postconditioning. However, complex I inhibition does

not normally inhibit ROS production unless electron

transfer is occurring in the reversed direction from

succinate to NAD+, or the inhibition occurs at the

NADH-binding site. Succinate may accumulate dur-

ing ischaemia, and power ROS production during

reperfusion. An alternative explanation might be that

inhibition of complex I during ischaemia may stimu-

late ROS generation, which may trigger signalling

cascades leading to cell survival on reoxygenation

[115,116].

Does ischaemia induce release of
cytochrome c from mitochondria?

Substantial evidence, obtained with direct and indirect

assays, has accumulated over three decades that heart

ischaemia (without reperfusion) causes rapid cyto-

chrome c release from mitochondria. In the earliest

studies, this was demonstrated by the so-called cyto-

chrome c test, in which exogenous cytochrome c is

added to mitochondria, and the change in respiration

rate is measured. As cytochrome c cannot cross the

intact mitochondrial outer membrane, stimulation of

respiration after addition of cytochrome c is inter-

preted as an indication of damage to the mitochon-

drial outer membrane and a lack of endogenous
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cytochrome c. With this methodology, it has been

shown that addition of cytochrome c to mitochondria

isolated from hearts after 30 min of ischaemia can

restore the state 3 respiration rate to the preischaemic

rate with the substrates glutamate plus malate [117]

and succinate [35]. Direct measurements of mitochon-

drial and cytosolic cytochrome c have shown that

cytochrome c is not released after 15 min of ischaemia

but is progressively lost from mitochondria to the

cytosol after 20–60 min of heart ischaemia [85]. The

loss of cytochrome c during ischaemia is not an arte-

fact of the mitochondrial isolation procedure, as it is

observed in permeabilized cardiac fibres [85,118,119],

which are considered to contain intact mitochondria

[120]. Chen and Lesnevsky [69,121] found that subsar-

colemmal mitochondria were more sensitive to ischae-

mia than interfibrillar mitochondria: cytochrome c was

lost from subsarcolemmal mitochondria after 30 min

of ischaemia, whereas interfibrillar mitochondria

remained intact. Interestingly, these investigators

found that blockade of the mitochondrial respiratory

chain at complex I or complex III preserved the mito-

chondrial content of cytochrome c during ischaemia,

whereas inhibition of COX had no effect on ischae-

mia-induced loss of cytochrome c from subsarcolem-

mal mitochondria. In another study, Lesnevsky et al.

found that, in perfused rabbit hearts, loss of mitochon-

drial cardiolipin and cytochrome c occurred after

45 min of ischaemia, resulting in respiratory dysfunc-

tion of mitochondria, and reperfusion did not lead to

any additional damage [69]. It was concluded that loss

of cardiolipin and cytochrome c during ischaemia

causes persistent mitochondrial dysfunction during the

early reperfusion period.

Ischaemia-induced cytochrome c release from mito-

chondria into the cytosol has been also been reported

in other organs, such as rat liver, where translocation

of cytochrome c was detected 15 min after clamping

of the blood vessels, and reached maximal levels after

90 min of ischaemia [122].

During transient cerebral ischaemia (90 min of

occlusion of the middle cerebral artery) in rats, the

release of cytochrome c from mitochondria into the

cytosol was observed, at the earliest, after 4 h of rep-

erfusion [123], and was associated with signs of neu-

ronal apoptosis 24 h later. Similar results were

obtained in other studies, where the appearance of

cytochrome c in the cytosol was detected in neurons

of the core and penumbra of the lesion after 60 min

of ischaemia followed by 6 h of reperfusion [124]. In

another study, cytochrome c release was observed

after 20 min of ischaemia induced by occlusion of

both common carotid arteries followed by 30 min of

reperfusion [125]. Whether loss of cytochrome c

occurs in brain during the ischaemic period is less

clear, although, in a model of focal permanent ischae-

mia in mice, cytochrome c release was observed after

30 min of middle cerebral artery occlusion, and pro-

gressed further during 24 h of ischaemia [126]. Gener-

ally, in mice, the release of cytochrome c from

mitochondria is seen at earlier times of ischaemia or

ischaemia–reperfusion than in other species. However,

the fraction of released cytochrome c is usually rela-

tively small as compared with that remaining in the

mitochondria [55]. In our experiments on cerebral

ischaemia in vivo in piglets, inhibition of mitochon-

drial respiration with complex I substrates is

observed, at the earliest, after 3 h of ischaemia, but it

is not reversed in the presence of exogenous cyto-

chrome c, suggesting that mitochondrial cytochrome c

is not lost from mitochondria during this period of

ischaemia (unpublished data). It is likely that brain

mitochondria are more resistant to ischaemia-induced

release of cytochrome c from mitochondria, and the

release may be a relatively late event as compared

with the time at which suppression of mitochondrial

respiratory chain activity occurs.

Although there was evidence in the literature indi-

cating that cytochrome c loss from mitochondria is

induced by ischaemia, for some time this was ques-

tioned or neglected, owing to observations that reper-

fusion after the ischaemic period greatly promotes

cardiac injury and cell death [127]. This notion was

supported by studies from several groups demonstrat-

ing that the main event in ischaemic heart damage is

opening of MPTPs, which leads to permeabilization of

mitochondrial membranes. MPT is thought to occur

during reperfusion rather than during ischaemia

[32,119,128,129], potentially causing cytochrome c

release. Consistent with this, many investigators have

reported the release of cytochrome c from mitochon-

dria at various times after ischaemia–reperfusion: in

perfused rabbit hearts, after 30 min of ischaemia plus

15 min of reperfusion [130]; in cultured rat cardiomyo-

cytes, after 3 h of anoxia plus 2 h of reoxygenation

[131]; and in isolated chick cardiomycytes, after

60 min of ischaemia plus 5 min of reperfusion [132].

Thus, the idea arose that the apparent cytochrome c

release during ischaemia was an artefact of reperfusion

of the ischaemic heart during the isolation of mito-

chondria. However, there has recently been some pro-

gress in resolving this issue, as the group of Halestrap

published data reassessing their previous findings, and

confirmed that mitochondrial cytochrome c is released

after 30 min of heart ischaemia without reperfusion

[119].
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Mechanisms of ischaemia-induced
cytochrome c release from
mitochondria

The release of cytochrome c from mitochondria

requires dissociation of the protein from the outer sur-

face of mitochondrial inner membrane, followed by

translocation through the outer membrane owing to

its rupture or via specific pores. Although the precise

mechanisms by which cytochrome c is released from

mitochondria during ischaemia are not fully under-

stood, at least three pathways have been discussed in

the literature (Fig. 3). First, loss of cytochrome c from

mitochondria may be caused by opening of MPTPs,

which causes mitochondrial swelling and rupture of

the mitochondrial outer membrane. In line with this,

we found that ischaemia-induced loss of cytochrome c

from mitochondria was prevented when hearts were

pre-perfused with an inhibitor of MPTPs – cyclospo-

rin A [118]. However, using similar conditions, Pasdois

et al. [119] found that cyclosporin A could not prevent

ischaemia-induced cytochrome c release. We do not

know the reason for this discrepancy. Pasdois et al.

[119] suggested that ischaemia-induced cytochrome c

release might result from the measured ischaemia-

induced loss of hexokinase II and Bcl-xL from

mitochondria, possibly owing to calpain truncation of

Bcl-XL to a form that can pass through the outer

membrane. However, this suggestion remains specula-

tive at present.

Another potential pathway of cytochrome c release

from mitochondria involves the formation of large

channels in the mitochondrial outer membrane via

insertion of proapoptotic BH3 domain-containing pro-

teins such as Bax, Bid, or Bad. It was shown that

20 min of simulated ischaemia induced p38 mitogen-

activated protein kinase-dependent Bax translocation

from the cytosol to mitochondria, and Bax transloca-

tion increased with longer periods of ischaemia

[133,134]. This study also showed that Bax activation

and translocation to mitochondria (preceding the

release of cytochrome c) may be initiated during the is-

chaemic period itself, perhaps causing depletion of cel-

lular energy resources and subsequent activation of

AMP-dependent protein kinases [133]. Similarly, in

another study using simulated ischaemia–reperfusion
of isolated rat adult cardiomyocytes, it was demon-

strated that 90 min of anoxia induced adenylyl

cyclase-dependent and protein kinase A-dependent

phosphorylation and translocation of cytosolic Bax to

mitochondria, resulting in later cytochrome c release

from mitochondria during simulated reperfusion [135].

According to this study, translocation of Bax was not

sufficient to cause release of cytochrome c. Additional

factors, such as oxidative stress during reperfusion,

were needed to cause release. In the in vivo model of

coronary artery occlusion/reperfusion of rat heart,

translocation and tight association of Bax with mito-

chondria was detected only after 30 min of reperfusion

(which followed 30 min of ischaemia), and was accom-

panied by massive release of cytochrome c from mito-

chondria [136]. Interestingly, a small but statistically

significant increase in the cytosolic cytochrome c level

was detected in this study even after 30 min of ischae-

mia itself, and was further promoted by reperfusion.

This raises doubt about the involvement of Bax in

ischaemia-induced cytochrome c release. Indeed, other

investigators showed that cytochrome c loss during

ischaemia was not associated with changes in the mito-

chondrial contents of Bax, Bad, Bak, or Bid, although

a decrease in the content of the mitochondrial antia-

poptotic protein Bcl-XL during ischaemia has been

detected [119,137]. On the other hand, there is some

evidence that MPT and Bax may be related, and may

cooperate in providing a means for cytochrome c

release from mitochondria, at least in certain models

of apoptosis [138,139].

A further potential mechanism of cytochrome c

release from mitochondria during ischaemia may be

related to changes in the phospholipid composition of

mitochondrial outer membranes, in particular

Bak/Bax MPTPLipids

ROS
Bak/Bax MPTPLipids

C t h   lCytochrome c release

Mitochondrial
fCaspases dysfunctionCaspases

Apoptosis ATP depletion

Necrosis

Fig. 3. Mechanisms and consequences of ischaemia-induced

cytochrome c release from mitochondria. During ischaemia,

mitochondrial cytochrome c may be released into the cytosol by

mechanisms involving Bcl-2 proteins, lipids, or MPTP opening. In

the cytosol, cytochrome c can participate in the activation of

caspases, leading to apoptosis. Loss of cytochrome c from

mitochondria may result in increased production of ROS, which, in

turn, may lead to further oxidative damage to mitochondria. Loss

of cytochrome c from mitochondria may result in mitochondrial

dysfunction and ATP depletion, causing necrosis.
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cardiolipin. Cardiolipin is present only in mitochon-

dria, and is mainly located in the mitochondrial inner

membrane, but it has also been found to be present in

the outer membrane [140], where it may interact with

Bcl-2-homologous proteins. Within the intermembrane

space of mitochondria, cytochrome c is normally

almost all reversibly bound to the cardiolipin of the

inner membrane [141,142]. Cardiolipin depletion or

oxidation causes dissociation of cytochrome c from

the mitochondrial inner membrane, which is a require-

ment for cytochrome c release from mitochondria

[143]. It has been shown that 45 min of ischaemia

decreases the cardiolipin content of subsarcolemmal

but not interfibrillar mitochondria of isolated rabbit

heart without any further changes during reperfusion

[69]. The cytochrome c content decreased in parallel

with cardiolipin levels in subsarcolemmal mitochondria

[69]. However, this study also revealed that cyto-

chrome c was lost from interfibrillar mitochondria

during ischaemia without any detectable changes in

cardiolipin content, which may suggest that ischaemia

leads to some loss of cytochrome c independently of

cardiolipin depletion [69].

Kagan [144] has recently suggested that cyto-

chrome c may form complexes with cardiolipin that

catalyse H2O2-dependent cardiolipin peroxidation.

Cardiolipin peroxidation may affect interactions of

Bax and Bid with mitochondrial membranes, and in

this way may be involved in mitochondrial outer mem-

brane permeabilization [145]. Whether such a mecha-

nism may operate during ischaemia is unclear.

Another potential mechanism is for saturated free

fatty acids, which accumulate in ischaemic heart, to

form complexes with elevated Ca2+, leading to mito-

chondrial outer membrane permeabilization owing to

the formation of (cyclosporin-insensitive) pores [146].

However, there is no experimental evidence yet for

such a mechanism in ischaemic conditions.

What are the consequences of cytochrome c release

during ischaemia? (a) We have found that cyto-

chrome c release during heart ischaemia can trigger

caspase activation, which itself can trigger further

cytochrome c release. Thus, during prolonged ischae-

mia or reperfusion, part of the cytochrome c release

can be prevented in the presence of caspase inhibitors

[118]. Cytochrome c release via caspase activation can

trigger apoptosis, which may contribute to heart dam-

age during ischaemia or reperfusion. (b) Cytochrome c

release during ischaemia is the main cause of respira-

tory inhibition (which can be reversed by adding back

cytochrome c), which may block contractile function

during reperfusion. (c) Cytochrome c release during

ischaemia promotes mitochondrial ROS production

during reperfusion, because it causes a reduction in the

activity of of complexes I and III, and because mito-

chondrial cytochrome c normally oxidizes superoxide

back to oxygen [119].

Conclusions

The data obtained over a half-century of intensive

research on mitochondrial functions during ischaemia–
reperfusion allow us to conclude that ischaemia itself

has a detrimental effect on oxidative phosphorylation,

particularly by inhibiting the mitochondrial respiratory

chain. The primary effects of ischaemia seem to be

exerted on mitochondrial complex I, which is sup-

pressed reversibly at the beginning and irreversibly dur-

ing prolonged ischaemia or reperfusion. Another early

mitochondrial event during ischaemia that may cause

irreversible damage to mitochondria is the release of

cytochrome c from mitochondria into the cytosol.

However, the mechanism(s) and consequences of ischae-

mia-induced complex I inhibition and cytochrome c

release are still unclear, and require further research.

Understanding these mechanisms may be important in

developing better strategies for cardioprotection and

neuroprotection. A promising current approach is

ischaemic or pharmacological preconditioning and post-

conditioning, the target of which is thought to be MPT.

However, if MPT occurs only during reperfusion, but

cytochrome c is lost during ischaemia, then additional

strategies to prevent cytochrome c-mediated caspase

activation and energy depletion resulting from suppres-

sion of oxidative phosphorylation in cytochrome c-defi-

cient mitochondria may need to be applied together

with inhibition of MPT.
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